Deforming the Lie Superalgebra of Contact Vector Fields on S 1 | 1 inside the Lie Superalgebra of Superpseudodifferential operators on S 1 | 1
نویسندگان
چکیده
We classify nontrivial deformations of the standard embedding of the Lie superalgebra K(1) of contact vector fields on the (1,1)-dimensional supercircle into the Lie super-algebra of superpseudodifferential operators on the supercircle. This approach leads to the deformations of the central charge induced on K(1) by the canonical central extension of SΨDO.
منابع مشابه
Differential operators on supercircle: conformally equivariant quantization and symbol calculus
We consider the supercircle S equipped with the standard contact structure. The conformal Lie superalgebra K(1) acts on S as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra osp(1|2). We study the space of linear differential operators on weighted densities as a module over osp(1|2). We introduce the canonical isomorphism between this space and the correspondin...
متن کاملar X iv : h ep - t h / 03 11 24 7 v 1 2 6 N ov 2 00 3 On representations of the exceptional superconformal algebra
A superconformal algebra is a simple complex Lie superalgebra g spanned by the coefficients of a finite family of pairwise local fields a(z) = ∑ n∈Z a(n)z , one of which is the Virasoro field L(z), [3, 8, 11]. Superconformal algebras play an important role in the string theory and conformal field theory. The Lie superalgebras K(N) of contact vector fields with Laurent polynomials as coefficient...
متن کاملOn generalized reduced representations of restricted Lie superalgebras in prime characteristic
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
متن کاملCohomology of aff(1|1) acting on the space of bilinear differential operators on the superspace IR1|1
We consider the aff(1)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra aff(1) with coefficients in space Dλ,ν;µ of bilinear differential operators acting on weighted densities. We study also the super analogue of this problem getting the same results.
متن کاملThe Supermagic Square in Characteristic 3 and Jordan Superalgebras
Recently, the classical Freudenthal Magic Square has been extended over fields of characteristic 3 with two more rows and columns filled with (mostly simple) Lie superalgebras specific of this characteristic. This Supermagic Square will be reviewed and some of the simple Lie superalgebras that appear will be shown to be isomorphic to the Tits-Kantor-Koecher Lie superalgebras of some Jordan supe...
متن کامل